

Welcome to pypmj’s documentation!

The pypmj (python project manager for JCMsuite; pronounce “py pi ɛm dʒe”)
package extends the python interface shipped with the finite element Maxwell
solver JCMsuite, distributed by the JCMwave GmbH.

It simplifies the setup, execution and data storage of JCMsuite simulations.
Some of the main advantages are:

	The JCMsuite installation directory, the preferred storage directories and
computation resources can be set up using a configuration file.

	Projects can be collected in one place as a project library and used from
there.

	Parameter scans can be efficiently executed and evaluated using the
SimulationSet class. Different combinations of input parameter lists
make nested loops unnecessary.

	User defined processing of post process results.

	Computational costs and user results are efficiently stored in an HDF5
data base.

	Automatic detection of known results in the database.

Contents

	pypmj package
	Module contents

	pypmj.core module

	pypmj.parallelization module

	pypmj.utils module

	Extensions
	pypmj.extension_antenna

Indices and tables

	Index

	Module Index

	Search Page

pypmj package

Module contents

pypmj

The pypmj (python project manager for JCMsuite; pronounce “py pi ɛm dʒe”)
package extends the python interface shipped with the finite element Maxwell
solver JCMsuite, distributed by the JCMwave GmbH.

It simplifies the setup, execution and data storage of JCMsuite simulations.
Some of the main advantages are:

	The JCMsuite installation directory, the preferred storage directories and
computation resources can be set up using a configuration file.

	Projects can be collected in one place as a project library and used from
there.

	Parameter scans can be efficiently executed and evaluated using the
SimulationSet class. Different combinations of input parameter lists
make nested loops unnecessary.

	User defined processing of post process results.

	Computational costs and user results are efficiently stored in an HDF5
data base.

	Automatic detection of known results in the database.

Copyright(C) 2016 Carlo Barth, Helmholtz Zentrum Berlin für Materialien und Energie GmbH.
(This software project is controlled using git)

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.

	
pypmj.import_jcmwave(jcm_install_path=None)

	Imports jcmwave as jcm and jcmwave.daemon as daemon into the pypmj
namespace and sets the __jcm_version__ module attribute.

	Parameters

	jcm_install_path (str or NoneType, default None) – Sets the path to the JCMsuite installation directory in the current
configuration. If None, it is assumed that the path is already
configured. Raises a RuntimeError in that case if the configuration
is invalid.

	
pypmj.jcm_license_info(log=True, return_output=False)

	Prints and/or returns the current JCMsuite license information. Returns
None, if jcmwave is not yet imported.

	
pypmj.jcm_version_info(log=True, return_output=False)

	Prints and/or returns the current JCMsuite version information. Returns
None, if jcmwave is not yet imported.

	
pypmj.load_config_file(filepath)

	Reset the current configuration and overwrite it with the
configuration in the config file specified by filepath.

	
pypmj.load_extension(ext_name)

	Loads the specified extension of pypmj.

See pypmj.extensions for a list of extensions.

	
pypmj.set_log_file(directory='logs', filename='from_date')

	Sets up the logging to a log-file if this is not already configured.

	Parameters

	
	directory (str, default 'logs') – The directory in which the logging file should be created as an
absolute or relative path. It will be created if does not exist.

	filename (str, default 'from_date') – The name of the logging file. If ‘from_date’, a date string will be
used (format: %y%m%d.log).

pypmj.core module

Defines the centerpiece class SimulationSet of pypmj and the
abstraction layers for projects, single simulations. Also, more specialized
simulation sets such as the ConvergenceTest-class are defined here.

Authors : Carlo Barth

	
class pypmj.core.ConvergenceTest(project, keys_test, keys_ref, duplicate_path_levels=0, storage_folder='from_date', storage_base='from_config', transitional_storage_base=None, combination_mode='product', check_version_match=True, resource_manager=None)

	Bases: object

Class to set up, run and analyze convergence tests for JCMsuite
projects. A convergence test consists of a reference simulation and (a)
test simulation(s). The reference simulation should be of much higher
accuracy than any of the test simulations.

This class initializes two SimulationSet instances. All init arguments are
the same as for SimulationSet, except that there are two sets of keys.

	Parameters

	
	project (JCMProject, str or tuple/list of the form (specifier,) – working_dir) JCMProject to use for the simulations. If no JCMProject-
instance is provided, it is created using the given specifier or, if
project is of type tuple, using (specifier, working_dir) (i.e.
JCMProject(project[0], project[1])).

	keys_test/keys_ref (dict) – These are keys-dicts as used to initialize a SimulationSet. The
keys_ref must correspond to a single simulation. The syntax is the
same as for SimulationSet, which we repeat here:
There are two possible use cases:

	The keys are the normal keys as defined by JCMsuite, containing
all the values that need to passed to parse the JCM-template
files. In this case, a single computation is performed using
these keys.

	The keys-dict contains at least one of the keys [constants,
geometry, parameters] and no additional keys. The values of
each of these keys must be of type dict again and contain the keys
necessary to parse the JCM-template files. Depending on the
combination_mode, loops are performed over any
parameter-sequences provided in geometry or parameters. JCMgeo
is only called if the keys in geometry change between
consecutive runs. Keys in constants are not stored in the HDF5
store! Consequently, this information is lost, but also adds the
flexibility to path arbitrary data types to JCMsuite that could
not be stored in the HDF5 format.

	duplicate_path_levels (int, default 0) – For clearly arranged data storage, the folder structure of the current
working directory can be replicated up to the level given here. I.e.,
if the current dir is /path/to/your/pypmj/ and
duplicate_path_levels=2, the subfolders your/pypmj will be created
in the storage base dir (which is controlled using the configuration
file). This is not done if duplicate_path_levels=0.

	storage_folder (str, default 'from_date') – Name of the subfolder inside the storage folder in which the final data
is stored. If ‘from_date’ (default), the current date (%y%m%d) is used.
Note: in contrast to a single SimulationSet, subfolders ‘Test’ and
‘Reference’ are created inside the storage folder for the two sets.

	storage_base (str, default 'from_config') – Directory to use as the base storage folder. If ‘from_config’, the
folder set by the configuration option Storage->base is used.

	transitional_storage_base (str, default None) – Use this directory as the “real” storage_base during the execution,
and move all files to the path configured using storage_base and
storage_folder afterwards. This is useful if you have a fast drive
which you want to use to accelerate the simulations, but which you do
not want to use as your global storage for simulation data, e.g.
because it is to small.

	combination_mode ({'product', 'list'}) – Controls the way in which sequences in the geometry or parameters
keys are treated.

	If product, all possible combinations of the provided keys are
used.

	If list, all provided sequences need to be of the same length N,
so that N simulations are performed, using the value of the i-th
element of each sequence in simulation i.

	check_version_match (bool, default True) – Controls if the versions of JCMsuite and pypmj are compared to the
versions that were used when the HDF5 store was used. This has no
effect if no HDF5 is present, i.e. if you are starting with an empty
working directory.

	resource_manager (ResourceManager or NoneType, default None) – You can pass your own ResourceManager-instance here, e.g. to
configure the resources to use before the ConvergenceTest is
initialized. The resource_manager will be used for both of the
simulation sets. If None, a ResourceManager-instance will be
created automatically.

	
add_resources(n_shots=10, wait_seconds=5, ignore_fail=False)

	Tries to add all resources configured in the configuration using the
JCMdaemon.

	
analyze_convergence_results(dev_columns, sort_by=None, data_ref=None)

	Calculates the relative deviations to the reference data for the
columns in the dev_columns. A new DataFrame containing the test
simulation data and the relative deviations is created (as class
attribute analyzed_data) and returned. It is sorted in ascending
order by the first dev_column or by the one specified by sort_by. A
list of all deviation column names is stored in the deviation_columns
attribute.

If more than 1 dev_columns is given, the mean deviation is
also calculated and stored in the DataFrame column ‘deviation_mean’. It
is used to sort the data if sort_by is None.

	
close_stores()

	Closes all HDF5 stores.

	
get_current_resources()

	Returns a list of the currently configured resources, i.e. the ones
that will be added using add_resources.

	
make_simulation_schedule()

	Same as for SimulationSet.

Calls the make_simulation_schedule method for both sets.

	
open_stores()

	Opens all HDF5 stores.

	
reset_resources()

	Resets the resources to the default configuration.

	
run(run_ref_with_max_cores='AUTO', save_run=False, **simuset_kwargs)

	Runs the reference and the test simulation sets using the
simuset_kwargs, which are passed to the run-method of each
SimulationSet-instance.

	Parameters

	
	run_ref_with_max_cores (str (DaemonResource nickname) or False,) – default ‘AUTO’
If ‘AUTO’, the DaemonResource with the most cores is automatically
determined and used for the reference simulation with a
multiplicity of 1 and all configured cores as n_threads. If
a nickname is given, all configured cores of this resource are used
in the same way. If False, the currently active resource
configuration is used. The configuration for the test simulation
set remains untouched.

	save_run (bool, default False) – If True, the utility function run_simusets_in_save_mode is used
for the run.

	
run_reference_simulation(run_on_resource='AUTO', save_run=False, **simuset_kwargs)

	Runs the reference simulation set using the simuset_kwargs, which
are passed to the run-method.

	Parameters

	
	run_on_resource (str (DaemonResource.nickname) or False, default 'AUTO') – If ‘AUTO’, the DaemonResource with the most cores is automatically
determined and used for the reference simulation with a
multiplicity of 1 and all configured cores as n_threads. If
a nickname is given, all configured cores of this resource are used
in the same way. If False, the currently active resource
configuration is used.

	save_run (bool, default False) – If True, the utility function run_simusets_in_save_mode is used
for the run.

	
run_test_simulations(save_run=False, **simuset_kwargs)

	Runs the test simulation set using the simuset_kwargs, which
are passed to the run-method.

	Parameters

	save_run (bool, default False) – If True, the utility function run_simusets_in_save_mode is used
for the run.

	
use_only_resources(names)

	Restrict the daemon resources to names. Only makes sense if the
resources have not already been added.

Names that are unknown are ignored. If no valid name is present,
the default configuration will remain untouched.

	
write_analyzed_data_to_file(file_path=None, mode='CSV', **kwargs)

	Writes the data calculated by analyze_convergence_results to a CSV
or an Excel file.

mode must be either ‘CSV’ or ‘Excel’. If file_path is None,
the default name results.csv/xls in the storage folder is used.
kwargs are passed to the corresponding pandas functions.

	
class pypmj.core.JCMProject(specifier, working_dir=None, project_file_name=None, job_name=None)

	Bases: object

Represents a JCMsuite project, initialized using a path specifier (
relative to the projects path specified in the configuration), checks its
validity and provides functions to copy its content to a working directory,
remove it afterwards, etc.

	Parameters

	
	specifier (str or list) –
	Can be

	
	a path relative to the projects path specified in the
configuration, given as complete str to append or sequence of
strings which are .joined by os.path.join(),

	or an absolute path to the project directory.

	working_dir (str or None, default None) – The path to which the files in the project directory are copied. If
None, a folder called current_run is created in the current working
directory

	project_file_name (str or None, default None) – The name of the project file. If None, automatic detection is tried
by looking for a .jcmp or .jcmpt file with a line that starts with
the word Project. If this fails, an Exception is raised.

	job_name (str or None, default None) – Name to use for queuing system such as slurm. If None, a name is
composed using the specifier.

	
copy_to(path=None, overwrite=True, sys_append=True)

	Copies all files inside the project directory to path, overwriting
it if overwrite=True, raising an Error otherwise if it already exists.

Note: Appends the path to sys.path if sys_append=True.

	
get_file_path(file_name)

	Returns the full path to the file with file_name if present in
the current project. If this project was already copied to a working
directory, the path to this directory is used. Otherwise, the source
directory is used.

	
get_project_file_path()

	Returns the complete path to the project file.

	
merge_pp_files_to_project_file(pp_files)

	Creates a backup of the project file and appends the contents
of the pp_files (single file or list) to the project file. This is
useful if additional post processes should be executed without
modifying the original project file. The path to the backup file
is stored in the project_file_backup_path attribute.

	
remove_working_dir()

	Removes the working directory.

	
restore_original_project_file()

	Overwrites the original project file with the backup version if
it exists.

	
show_readme(try_use_markdown=True)

	Returns the content of the README.md file, if present. If
try_use_markdown is True, it is tried to display the mark down file
in a parsed way, which might only work inside ipython/jupyter notebooks.

	
class pypmj.core.QuantityMinimizer(project, fixed_keys, duplicate_path_levels=0, storage_folder='from_date', storage_base='from_config', combination_mode='product', resource_manager=None)

	Bases: pypmj.core.SimulationSet

	
check_validity_of_input_args()

	Checks if the provided fixed_keys describe a single simulation.

	
make_simulation_schedule()

	

	
minimize_quantity(x, quantity_to_minimize, maximize_instead=False, processing_func=None, wdir_mode='keep', jcm_geo_kwargs=None, jcm_solve_kwargs=None, **scipy_minimize_kwargs)

	TODO

	Parameters

	
	x (string type) – Name of the input parameter which is the input argument to the
function that will be minimized.

	quantity_to_minimize (string type) – The result quantity for which the minimium should be found. This
must be calculated by the processing_func.

	maximize_instead (bool, default False) – Whether to search for the maximum instead of the minimum.

	processing_func (callable or NoneType, default None) – Function for result processing. If None, only a standard processing
will be executed. See the docs of the
Simulation.process_results-method for more info on how to use this
parameter.

	wdir_mode ({'keep', 'delete'}, default 'keep') – The way in which the working directories of the simulations are
treated. If ‘keep’, they are left on disk. If ‘delete’, they are
deleted.

	jcm_solve_kwargs (jcm_geo_kwargs,) – Keyword arguments which are directly passed to jcm.geo and
jcm.solve, respectively.

	will be passed to the scipy.optimize.minimize (scipy_minimize_kwargs) –

	function. –

	
pickle_optimization_results(file_name='optimization_results.pkl')

	

	
class pypmj.core.ResourceManager

	Bases: object

Class for convenient management of resources in all objects that are
able to provoke simulations, i.e. call jcmwave.solve.

	
add_resources(n_shots=10, wait_seconds=5, ignore_fail=False)

	Tries to add all resources configured in the configuration using the
JCMdaemon.

	
get_current_resources()

	Returns a list of the currently configured resources, i.e. the ones
that will be added using add_resources.

	
load_state()

	Loads a previously saved state.

	
reset_daemon()

	Resets the JCMdaemon, i.e. disconnects it and resets the queue.

	
reset_resources()

	Resets the resources to the default configuration.

	
save_state()

	Saves the current resource configuration internally, allowing to
reset it to this state later.

	
use_only_resources(names)

	Restrict the daemon resources to names. Only makes sense if the
resources have not already been added.

Names that are unknown are ignored. If no valid name is present,
the default configuration will remain untouched.

	
use_single_resource_with_max_threads(resource_nick=None, n_threads=None)

	Changes the current resource configuration to only a single resource.
This resource can be specified by its nickname. If resource_nick
is None, the resource with the maximum available cores will be detected
automatically from the current configuration. The multiplicity of this
resource will be set to 1, and the number of threads to the maximum or
the given number n_threads.

	
class pypmj.core.Simulation(keys, project=None, number=0, stored_keys=None, storage_dir=None, rerun_JCMgeo=False, store_logs=True, resultbag=None, **kwargs)

	Bases: object

Describes a distinct JCMsuite simulation by its keys and path/filename
specific attributes. Provides method to perform the simulation , i.e. run
JCMsolve on the project and to process the returned results using a custom
function. It then also holds all the results, logs, etc. and can return
them as a pandas DataFrame.

	Parameters

	
	keys (dict) – The keys dict passed as the keys argument of jcmwave.solve. Used to
translate JCM template files (i.e. *.jcmt-files).

	project (JCMProject, default None) – The JCMProject instance related to this simulation.

	number (int) – A simulation number to identify/order simulations in a series of
multiple simulations. It is used as the row index of the returned
pandas DataFrame (e.g. by _get_DataFrame()).

	stored_keys (list or NoneType, default None) – A list of keys (must be a subset of keys.keys()) which will be part
of the data in the pandas DataFrame, i.e. columns in the DataFrame
returned by _get_DataFrame(). These keys will be stored in the HDF5
store by the SimulationSet-instance. If None, a it is tried to generate
an as complete list of storable keys as possible automatically.

	storage_dir (str (path)) – Path to the directory were simulation working directories will be
stored. The Simulation itself will be in a subfolder containing its
number in the folder name. If None, the subdirectory ‘standalone_solves’
in the current working directory is used.

	rerun_JCMgeo (bool, default False) – Controls if JCMgeo needs to be called before execution in a series of
simulations.

	store_logs (bool, default True) – If True, the ‘Error’ and ‘Out’ data of the logs returned by JCMsuite
will be added to the results dict returned by process_results, and
consequently stored in the HDF5 store by the parent SimulationSet
instance.

	resultbag (jcmwave.Resultbag or None, default None) – Experimental!

Assign a resultbag (see jcmwave.resultbag for details).

	
compute_geometry(**jcm_kwargs)

	Computes the geometry (i.e. runs jcm.geo) for this simulation.

The jcm_kwargs are directly passed to jcm.geo, except for
project_dir, keys and working_dir, which are set automatically
(ignored if provided).

	
find_file(pattern)

	Finds a file in the working directory (see method working_dir())
matching the given (fnmatch.filer-) pattern. The working directory
is scanned recursively.

Returns None if no match is found, the file path if a single file is
found, or raises a RuntimeError if multiple files are found.

	
find_files(pattern, only_one=False)

	Finds files in the working directory (see method working_dir())
matching the given (fnmatch.filer-) pattern. The working directory
is scanned recursively.

If only_one is False (default), returns a list with matching file
paths. Else, returns None if no match is found, the file path if a
single file is found, or raises a RuntimeError if multiple files are
found.

	
forget_jcm_results_and_logs()

	

	
process_results(processing_func=None, overwrite=False)

	Process the raw results from JCMsolve with a function
processing_func of one input argument. The input argument, which is
the list of results as it was set in _set_jcm_results_and_logs, is
automatically passed to this function.

If processing_func is None, the JCM results are not processed and
nothing will be saved to the HDF5 store, except for the computational
costs.

The processing_func must be a function of one or two input arguments.
A list of all results returned by post processes in JCMsolve are passed
as the first argument to this function. If a second input argument is
present, it must be called ‘keys’. Then, the simulation keys are passed
(i.e. self.keys). This is useful to use parameters of the simulation,
e.g. the wavelength, inside your processing function. It must return a
dict with key-value pairs that should be saved to the HDF5 store.
Consequently, the values must be of types that can be stored to HDF5,
otherwise Exceptions will occur in the saving steps.

	
remove_working_directory()

	Removes the working directory.

	
set_pass_computational_costs(val)

	Sets the value of pass_computational_costs.

	
solve(pp_file=None, additional_keys=None, **jcm_kwargs)

	Starts the simulation (i.e. runs jcm.solve) and returns the job ID.

	Parameters

	
	pp_file (str or NoneType, default None) – File path to a JCM post processing file (extension .jcmp(t)). If
None, the get_project_file_path of the current project is used
and the mode ‘solve’ is used for jcmwave.solve. If not None, the
mode ‘post_process’ is used.

	additional_keys (dict or NoneType, default None) – dict which will be merged to the keys-dict before passing them
to the jcmwave.solve-method. Only new keys are added, duplicates
are ignored and not updated.

	jcm_kwargs are directly passed to jcm.solve, except for (The) –

	keys and working_dir, which are set (project_dir,) –

	(ignored if provided) (automatically) –

	
solve_standalone(processing_func=None, wdir_mode='keep', run_post_process_files=None, resource_manager=None, additional_keys_for_pps=None, jcm_solve_kwargs=None)

	Solves this simulation and returns the results and logs.

	Parameters

	
	processing_func (callable or NoneType, default None) – Function for result processing. If None, only a standard processing
will be executed. See the docs of the
Simulation.process_results-method for more info on how to use this
parameter.

	wdir_mode ({'keep', 'delete'}, default 'keep') – The way in which the working directories of the simulations are
treated. If ‘keep’, they are left on disk. If ‘delete’, they are
deleted.

	run_post_process_files (str, list or NoneType, default None) – File path or list of file paths to post processing files (extension
.jcmp(t)) which should be executed subsequent to the actual solve.
This calls jcmwave.solve with mode post_process internally. The
results are appended to the jcm_results-list of the Simulation
instance.

	resource_manager (ResourceManager or NoneType, default None) – You can pass your own ResourceManager-instance here, e.g. to
configure the resources to use before the SimulationSet is
initialized. If None, a ResourceManager-instance will be
created automatically.

	additional_keys_for_pps (dict or NoneType, default None) – dict which will be merged to the keys-dict of the Simulation
instance before passing them to the jcmwave.solve-method in the
post process run. This has no effect if run_post_process_files
is None. Only new keys are added, duplicates are ignored and not
updated.

	jcm_solve_kwargs (dict or NoneType, default None) – These keyword arguments are directly passed to jcm.solve, except
for project_dir, keys and working_dir, which are set
automatically (ignored if provided).

	
view_geometry()

	Opens the grid.jcm file using JCMview if it exists.

	
working_dir()

	Returns the name of the working directory, specified by the
storage_dir and the simulation number.

It is constructed using the global SIM_DIR_FMT formatter.

	
class pypmj.core.SimulationSet(project, keys, duplicate_path_levels=0, storage_folder='from_date', storage_base='from_config', use_resultbag=False, transitional_storage_base=None, combination_mode='product', check_version_match=True, resource_manager=None, store_logs=False, minimize_memory_usage=False)

	Bases: object

Class for initializing, planning, running and processing multiple
simulations.

	Parameters

	
	project (JCMProject, str or tuple/list of the form (specifier,working_dir)) – JCMProject to use for the simulations. If no JCMProject-instance is
provided, it is created using the given specifier or, if project is of
type tuple, using (specifier, working_dir) (i.e. JCMProject(project[0],
project[1])).

	keys (dict) – There are two possible use cases:

	The keys are the normal keys as defined by JCMsuite, containing
all the values that need to passed to parse the JCM-template
files. In this case, a single computation is performed using these
keys.

	The keys-dict contains at least one of the keys [constants,
geometry, parameters] and no additional keys. The values of
each of these keys must be of type dict again and contain the keys
necessary to parse the JCM-template files. Depending on the
combination_mode, loops are performed over any
parameter-sequences provided in geometry or parameters. JCMgeo
is only called if the keys in geometry change between
consecutive runs. Keys in constants are not stored in the HDF5
store! Consequently, this information is lost, but also adds the
flexibility to path arbitrary data types to JCMsuite that could
not be stored in the HDF5 format.

	duplicate_path_levels (int, default 0) – For clearly arranged data storage, the folder structure of the current
working directory can be replicated up to the level given here. I.e.,
if the current dir is /path/to/your/pypmj/ and
duplicate_path_levels=2, the subfolders your/pypmj will be created
in the storage base dir (which is controlled using the configuration
file). This is not done if duplicate_path_levels=0.

	storage_folder (str, default 'from_date') – Name of the subfolder inside the storage folder in which the final data
is stored. If ‘from_date’ (default), the current date (%y%m%d) is used.

	storage_base (str, default 'from_config') – Directory to use as the base storage folder. If ‘from_config’, the
folder set by the configuration option Storage->base is used.

	use_resultbag (bool, str (file path) or jcmwave.Resultbag, default False) – Experimental!

Whether to use a resultbag (see jcmwave.resultbag for details). If a
str is given, it is considered as the path to the resultbag-file.
If a False, the standard saving process using directories and data
files is used. If True, the standard resultbag file ‘resultbag.db’
in the storage directory is used. You can also pass a
jcmwave.Resultbag-instance.
Use the get_resultbag_path()-method to get the path of the current
resultbag. resultbag() returns the jcmwave.Resultbag-instance.
Use the methods rb_get_log_for_sim and rb_get_result_for_sim
to get logs and results from the resultbag for a particular
simulation.
Note: using a resultbag will ignore settings for store_logs.

	transitional_storage_base (str, default None) – Use this directory as the “real” storage_base during the execution,
and move all files to the path configured using storage_base and
storage_folder afterwards. This is useful if you have a fast drive
which you want to use to accelerate the simulations, but which you do
not want to use as your global storage for simulation data, e.g.
because it is to small.

	combination_mode ({'product', 'list'}) – Controls the way in which sequences in the geometry or parameters
keys are treated.

	If product, all possible combinations of the provided keys are
used.

	If list, all provided sequences need to be of the same length N,
so that N simulations are performed, using the value of the i-th
element of each sequence in simulation i.

	check_version_match (bool, default True) – Controls whether the versions of JCMsuite and pypmj are compared
to the versions that were used when the HDF5 store was created. This
has no effect if no HDF5 store is present, i.e. if you are starting
with an empty working directory.

	resource_manager (ResourceManager or NoneType, default None) – You can pass your own ResourceManager-instance here, e.g. to
configure the resources to use before the SimulationSet is
initialized. If None, a ResourceManager-instance will be created
automatically.

	store_logs (bool, default False) – Whether to store the JCMsuite logs to the HDF5 file (these may be
cropped in some cases).

	minimize_memory_usage (bool, default False) – Huge parameter scans can cause python to need massive memory because
the results and logs are kept for each simulation. Set this parameter
to true to minimize the memory usage. Caution: you will loose all the
jcm_results and logs in the Simulation-instances.

	
STORE_META_GROUPS = ['parameters', 'geometry']

	

	
STORE_VERSION_GROUP = 'version_data'

	

	
add_resources(n_shots=10, wait_seconds=5, ignore_fail=False)

	Tries to add all resources configured in the configuration using the
JCMdaemon.

	
all_done()

	Checks if all simulations are done, i.e. already in the HDF5
store.

	
append_store(data)

	Appends a new row or multiple rows to the HDF5 store.

	
close_store()

	Closes the HDF5 store.

	
compute_geometry(simulation, **jcm_kwargs)

	Computes the geometry (i.e. runs jcm.geo) for a specific simulation
of the simulation set.

	Parameters

	
	simulation (Simulation or int) – The Simulation-instance for which the geometry should be
computed. If the type is int, it is treated as the index of the
simulation in the simulation list.

	jcm_kwargs are directly passed to jcm.geo, except for (The) –

	keys and working_dir, which are set automatically (project_dir,) –

	if provided) ((ignored) –

	
fix_h5_store(try_restructure=True, brute_force=False)

	Tries to remove duplicate rows in the HDF5 store based on the
stored keys. If try_restructure is True, the HDF5 store is also
restructured using ptrepack to possibly free disc space and optimize
the compression. If problems persist, set brute_force=True which will
remove all rows with duplicate indices (warning: data gets lost!).

	
get_all_keys()

	Returns a list of all keys that are passed to JCMsolve.

	
get_current_resources()

	Returns a list of the currently configured resources, i.e. the ones
that will be added using add_resources.

	
get_project_wdir()

	Returns the path to the working directory of the current project.

	
get_resultbag_path()

	

	
get_store_data()

	Returns the data currently in the store.

	
is_store_empty()

	Checks if the HDF5 store is empty.

	
make_simulation_schedule(fix_h5_duplicated_rows=False)

	Makes a schedule by getting a list of simulations that must be
performed, reorders them to avoid unnecessary calls of JCMgeo, and
checks the HDF5 store for simulation data which is already known.
If duplicated rows are found, a RuntimeError is raised. In this
case, you can rerun make_simulation_schedule with
fix_h5_duplicated_rows=True to try to automatically fix it.
Alternatively, you could call the fix_h5_store-method yourself.

	
num_sims_to_do()

	Returns the number of simulations that still needs to be solved,
i.e. which are not already in the store.

	
open_store()

	Closes the HDF5 store.

	
rb_get_log_for_sim(sim)

	Returns the logs for the simulation sim from the resultbag.
sim must be simulation number or a Simulation-instance of the
current simulations-list.

	
rb_get_result_for_sim(sim)

	Returns the logs for the simulation sim from the resultbag.
sim must be simulation number or a Simulation-instance of the
current simulations-list.

	
reset_resources()

	Resets the resources to the default configuration.

	
resultbag()

	Returns the resultbag (jcmwave.Resultbag-instance) if configured
using the class attribute use_resultbag. Else, raises RuntimeError.

	
run(processing_func=None, N='all', auto_rerun_failed=1, run_post_process_files=None, additional_keys=None, wdir_mode='keep', zip_file_path=None, show_progress_bar=False, jcm_geo_kwargs=None, jcm_solve_kwargs=None, pass_ccosts_to_processing_func=False)

	Convenient function to add the resources, run all necessary
simulations and save the results to the HDF5 store.

	Parameters

	
	processing_func (callable or NoneType, default None) – Function for result processing. If None, only a standard processing
will be executed. See the docs of the
Simulation.process_results-method for more info on how to use this
parameter.

	N (int or 'all', default 'all') – Number of simulations that will be pushed to the jcm.daemon at a
time. If ‘all’, all simulations will be pushed at once. If many
simulations are pushed to the daemon, the number of files and the
size on disk can grow dramatically. This can be avoided by using
this parameter, while deleting or zipping the working directories
at the same time using the wdir_mode parameter.

	auto_rerun_failed (int or bool, default 1) – Controls whether/how often a simulation which failed is
automatically rerun. If False or 0, no automatic rerunning
will be done.

	run_post_process_files (str, list or NoneType, default None) – File path or list of file paths to post processing files (extension
.jcmp(t)) which should be executed subsequent to the actual solve.
In contrast to the procedure in the solve_single_simulation
method, a merged project file is created in this case, i.e. the
content of the post processing files is appended to the actual
project file. The original project file is backed up and restored
after the run.

	additional_keys (dict or NoneType, default None) – dict which will be merged to the keys-dict of the Simulation
instance before passing them to the jcmwave.solve-method.
Only new keys are added, duplicates are ignored and not
updated. These values are not stored in the HDF5 store!

	wdir_mode ({'keep', 'zip', 'delete'}, default 'keep') – The way in which the working directories of the simulations are
treated. If ‘keep’, they are left on disk. If ‘zip’, they are
appended to the zip-archive controled by zip_file_path. If
‘delete’, they are deleted. Caution: if you zip the directories and
extend your data later in a way that the simulation numbers change,
problems may occur.

	zip_file_path (str (file path) or None) – Path to the zip file if wdir_mode is ‘zip’. The file is created
if it does not exist. If None, the default file name
‘working_directories.zip’ in the current storage_dir is used.

	jcm_solve_kwargs (jcm_geo_kwargs,) – Keyword arguments which are directly passed to jcm.geo and
jcm.solve, respectively.

	pass_ccosts_to_processing_func (bool, default False) – Whether to pass the computational costs as the 0th list element
to the processing_func.

	
solve_single_simulation(simulation, compute_geometry=True, run_post_process_files=None, additional_keys_for_pps=None, jcm_geo_kwargs=None, jcm_solve_kwargs=None)

	Solves a specific simulation and returns the results and logs
without any further processing and without saving of data to the HDF5
store. Recomputes the geometry before if compute_geometry is True.

	Parameters

	
	simulation (Simulation or int) – The Simulation-instance for which the geometry should be
computed. If the type is int, it is treated as the index of the
simulation in the simulation list.

	compute_geometry (bool, default True) – Runs jcm.geo before the simulation if True.

	run_post_process_files (str, list or NoneType, default None) – File path or list of file paths to post processing files (extension
.jcmp(t)) which should be executed subsequent to the actual solve.
This calls jcmwave.solve with mode post_process internally. The
results are appended to the jcm_results-list of the Simulation
instance.
Note: this feature is yet incompatible with use_resultbag!

	additional_keys_for_pps (dict or NoneType, default None) – dict which will be merged to the keys-dict of the Simulation
instance before passing them to the jcmwave.solve-method in the
post process run. This has no effect if run_post_process_files
is None. Only new keys are added, duplicates are ignored and not
updated.

	jcm_geo_kwargs (dict or NoneType, default None) – These keyword arguments are directly passed to jcm.geo, except for
project_dir, keys and working_dir, which are set
automatically (ignored if provided).

	jcm_solve_kwargs (dict or NoneType, default None) – These keyword arguments are directly passed to jcm.solve, except
for project_dir, keys and working_dir, which are set
automatically (ignored if provided).

	
use_only_resources(names)

	Restrict the daemon resources to names. Only makes sense if the
resources have not already been added.

Names that are unknown are ignored. If no valid name is present,
the default configuration will remain untouched.

	
write_store_data_to_file(file_path=None, mode='CSV', **kwargs)

	Writes the data that is currently in the store to a CSV or an Excel
file.

mode must be either ‘CSV’ or ‘Excel’. If file_path is None,
the default name results.csv/xls in the storage folder is used.
kwargs are passed to the corresponding pandas functions.

pypmj.parallelization module

Definitions classes for convenient usage of the jcmwave.daemon to run
jobs in parallel. The class DaemonResource gives eaccess to both,
workstations and queues and eases their configuration. The
ResourceDict-class serves as a set of such resources and provides methods
to set their properties all at once.

Authors : Carlo Barth

	
exception pypmj.parallelization.DaemonError(message)

	Bases: exceptions.Exception

Exception raised for errors in adding daemon resources.

	
expression

	Input expression in which the error occurred.

	
message

	str – Explanation of the error.

	
class pypmj.parallelization.DaemonResource(daemon_, hostname, login, JCM_root, multiplicity_default, n_threads_default, stype, nickname, **kwargs)

	Bases: object

Computation resource that can be used by the daemon-module of the JCMsuite
python interface. This can be a workstation or a queue.

Holds all properties which are necessary to call the add_workstation or
add_queue methods of the jcmwave.daemon. Frequently changed attributes
like the multiplicity and the number of threads can be changed by
convenient methods. Default values for these properties can be restored,
just as every other state can be saved and restored.

	Parameters

	
	daemon (module) – The daemon submodule of the jcmwave package delivered with your
JCMsuite installation.

	hostname (str) – Hostname of the server as it would be used for e.g. ssh. Use localhost
for the local computer.

	JCM_root (str (path), default None) – Path to the JCMsuite root installation folder. If None, the same path
as on the local computer is assumed.

	login (str) – The username used for login (a password-free login is required)

	multiplicity_default (int) – The default number of CPUs to use on this server.

	n_threads_default (int) – The default number of threads per CPU to use on this server.

	stype ({'Workstation', 'Queue'}) – Type of the resource to use in the JCMsuite daemon utility.

	nickname (str, default None) – Shorthand name to use for this server. If None, the hostname is used.

	**kwargs – Add additional key-value pairs to pass to the daemon functions (which
are add_workstation and add_queue) on your own risk.

	
add()

	Adds the resource to the current daemon configuration.

	
add_repeatedly(n_shots=10, wait_seconds=5, ignore_fail=False)

	Tries to add the resource repeatedly for n_shots times.

	
get_available_cores()

	Returns the total number of currently configured cores for this
resource, i.e. multiplicity*n_threads.

	
maximize_multiplicity(multiplicity=None)

	Changes n_threads to 1 and the multiplicity to the product of the
currently configured multiplicity and n_threads or to the given
number multiplicity.

	
maximize_n_threads(n_threads=None)

	Changes the multiplicity to 1 and the number of threads to the
product of the currently configured multiplicity and n_threads or
to the given number n_threads.

	
restore_default_m_n()

	Restores the default values for multiplicity and n_threads.

	
restore_previous_m_n()

	Restores the default values for multiplicity and n_threads.

	
save_m_n()

	Saves the currently active multiplicity and n_threads.

They can be restored using the restore_previous_m_n-method.

	
set_m_n(m, n)

	Shorthand for setting multiplicity and n_threads both at a time.

	
set_multiplicity(value)

	Set the number of CPUs to use.

	
set_n_threads(value)

	Set the number of threads to use per CPU.

	
class pypmj.parallelization.ResourceDict(*args, **kwargs)

	Bases: dict

Subclass of dict for extended handling of DaemonResource instances.

	
add_all()

	Calls the add method for all resources.

	
add_all_repeatedly(n_shots=10, wait_seconds=5, ignore_fail=False)

	Calls the add_repeatedly method for all resources.

	
get_all_queues()

	Returns a list of all resources with stype==’Queue’.

	
get_all_workstations()

	Returns a list of all resources with stype==’Workstation’.

	
get_resource_names()

	Just a more meaningful name for the keys()-method.

	
get_resource_with_most_cores()

	Determines which of the resources has the most usable cores, i.e.
multiplicity*n_threads, and returns its nickname and this number.

	
get_resources()

	Just a more meaningful name for the values()-method.

	
set_m_n_for_all(m, n)

	Shorthand for setting multiplicity and n_threads for all
resources.

	
pypmj.parallelization.read_resources_from_config(daemon_)

	Reads all server configurations from the configuration file.

It is assumed that each server is in a section starting with
Server:. For convenience, use the function addServer provided in
write_config_file.py.

	
pypmj.parallelization.savely_convert_config_value(value)

	Tries to convert a configuration value from a string type to int.
If value is not a string type, a ConfigurationError is raised.
If value does not consist of digits only, the input string is
returned.

pypmj.utils module

Defines functions and classes which are internally used in all parts of
pypmj, but may also be relevant to the user. Most importantly, the
functions run_simusets_in_save_mode and send_status_email are defined here.

Authors : Carlo Barth

	
class pypmj.utils.Capturing

	Bases: list

Context manager to capture any output printed to stdout.

based on: http://stackoverflow.com/questions/16571150/
how-to-capture-stdout-output-from-a-python-function-call

	
class pypmj.utils.DisableLogger(level=20)

	Bases: object

Context manager to disable all logging events below specific level.

	
pypmj.utils.append_dir_to_zip(directory, zip_file_path)

	Appends a directory to a zip-archive.

Raises an exception if the directory is already inside the archive.

	
pypmj.utils.assign_kwargs_to_functions(functions, kwargs, ignore_unmatched=True)

	Uses inspect to assign which argument in kwargs belongs to which of
the functions in the functions list.

If functions have any common argument names, an Error is raised. If
ignore_unmatched is True, unassigned arguments are ignored.
Returns a list of kwargs-dictionaries, one for each function.

	
pypmj.utils.check_type_consistency_in_sequence(sequence)

	Checks if all elements of a sequence have the same type.

	
pypmj.utils.computational_costs_to_flat_dict(ccosts, _sub=False)

	Converts the computational costs dict as returned by JCMsolve to a flat
dict with only scalar values (i.e. numbers or strings).

This is useful to store the computational costs in a pandas
DataFrame. Keys which have sequence values with a length other than
1 are converted to single values, while appending an underscore plus
index to the key.

	
pypmj.utils.file_content(file_path)

	Returns the content of an existing file.

	
pypmj.utils.get_folders_in_zip(zipf)

	Returns a list of all folders and files in the root level of an open
ZipFile.

	
pypmj.utils.get_len_of_parameter_dict(d)

	Given a dict, returns the length of the longest sequence in its
values.

	
pypmj.utils.infer_dtype(obj)

	Tries to infer the numpy.dtype (or equivalent) of the elements of a
sequence, or the numpy.dtype (or equivalent) of the object intelf if it is
no sequence.

	
pypmj.utils.is_callable(obj)

	Return whether the object is callable (i.e., some kind of function).

Note that classes are callable, as are instances with a __call__()
method.

	
pypmj.utils.is_sequence(obj)

	Checks if a given object is a sequence by checking if it is not a string
or dict, but has a __len__-method.

This might fail!

	
pypmj.utils.lists_overlap(list_1, list_2)

	Checks if two lists have no common elements.

	
pypmj.utils.obj_to_fixed_length_Series(obj, length)

	Generates a pandas Series with a fixed len of length with the best
matching dtype for the object.

If the object is sequence, the rows of the Series are filled with
its elements. Otherwise it will be the value of the first row.

	
pypmj.utils.query_yes_no(question, default='yes')

	Ask a yes/no question via raw_input() and return their answer.

“question” is a string that is presented to the user. “default” is
the presumed answer if the user just hits <Enter>. It must be
“yes” (the default), “no” or None (meaning an answer is required
of the user).

	
pypmj.utils.relative_deviation(sample, reference)

	Returns the relative deviation d=|A/B-1| of sample A and reference B.

A can be a (complex) number or a list/numpy.ndarray of (complex)
numbers. In case of complex numbers, the average relative deviation
of real and imaginary part (d_real+d_imag)/2 is returned.

	
pypmj.utils.rename_directories(renaming_dict)

	Safely renames directories given as old_name:new_name pairs as keys and
values in the renaming_dict.

It first renames all old names to unique temporary names, and
renames these to the new_names in a second step. This produces some
overhead, but circumvents the problem of overlapping names in the
old and new names. Safely ignores missing directories.

	
pypmj.utils.rm_empty_directory_tail(path, stop_at=None)

	Removes all empty directories of a path recursively, starting at the
tail, until a non empty directory is found or path is the same directory
given in stop_at.

	
pypmj.utils.run_simusets_in_save_mode(simusets, Ntrials=5, **kwargs)

	Given a list of SimulationSets, tries to run each SimulationSet
Ntrials times, starting at the point where it was terminated by an
unwanted error.

The kwargs are passed to the run-method of each set or to the
send_status_email utility function. They are automatically
assigned. Status e-mails are sent if configured in the configuration
file.

	
pypmj.utils.send_status_email(text, subject='JCMwave Simulation Information', subject_prefix='', subject_suffix='')

	Tries to send a status e-mail with the given text using the configured
e-mail server and address.

	
pypmj.utils.split_path_to_parts(path)

	Splits a path to its parts, so that os.path.join(*parts) gives the
input path again.

	
pypmj.utils.tForm(t1)

	Returns a well formated time string.

	
pypmj.utils.wait_for_all_other_daemons()

	Waits for all other currently active JCMdaemon processes to finish on
UNIX systems.

	
pypmj.utils.walk_df(df, col_vals, keys=None)

	Recursively finds a row in a pandas DataFrame where all values match the
values given in col_vals for the keys (i.e. column specifiers) in keys.

If no matching rows exist, None is returned. If multiple matching rows
exist, a list of indices of the matching rows is returned.

	Parameters

	
	df (pandas.DataFrame) – This is the DataFrame in which a matching row should be found. For
efficiency, it is not checked if the keys are present in the columns of
df, so this should be checked by the user.

	col_vals (dict or OrderedDict) – A dict that holds the (single) values the matching row of the DataFrame
should have, so that df.loc[match_index, key) == col_vals[key] for all
keys in the row with index match_index. If keys is only a subset of
the keys in the dict, remaining key-value pairs are ignored.

	keys (sequence (list/tuple/numpy.ndarray/etc.), default None) – keys (i.e. columns in df) to use for the comparison. The keys must be
present in col_vals. If keys is None, all keys of col_vals are used.

Extensions

pypmj.extension_antenna

TODO: Explanation

Authors: Niko Nikolay, Carlo Barth

	
class pypmj.extension_antenna.FarFieldEvaluation(simulation=None, direction=None, resolution=25, geometry='2D', subfolder='post_processes')

	Bases: object

TODO: Explanation

	Parameters

	
	simulation (pypmj.core.Simulation) – The simulation instance for which the far field evaluation should be
performed.

	direction ({'half_space_up', 'half_space_down', 'point_up',) – ‘point_down’, None}
Direction specification for the far field evaluation. If None, the
complete space will be considered. If ‘half_space_up’/
‘half_space_down’, only the upper/lower half space will be
considered. If ‘point_up’/’point_down’, a single evaluation point
in upward/downward direction will be used. Note: If a point
direction is used, the resolution parameter will be ignored.

	resolution (int, default 25) – …

	geometry ({'2D', '3D'}, default '2D') – …

	subfolder (str, default 'post_processes') – Folder name of the subfolder in the project working directory into
which the post processing jcmp(t)-files should be written.

	
analyze_far_field(**simulation_solve_kwargs)

	Analyzes the far field of the current simulation. Checks if the
expected .jcm-result files already exist and runs the simulation plus
necessary post-processes if not. Afterwards, it executes the standard
far field processing (using the _process_far_field_data-method).

	
load_far_field_data(file_path)

	Loads far field data from the .npz-file located at file_path.

	
save_far_field_data(file_path, compressed=True)

	Saves the far field data to the file at file_path using the
numpy.savez (or numpy.savez_compressed method if compressed is True).

	
pypmj.extension_antenna.far_field_processing_func(pps)

	This is the processing function for the far field evaluation as needed
for the core.Simulation.process_results-method (which is also used be
the run-methods). It reads the far field, refractive index and the
evaluation points from the far field post-processes.

	
pypmj.extension_antenna.read_jcm_far_field_tables(jcm_files)

	This is the processing function for the far field evaluation as needed
for the core.Simulation.process_results-method (which is also used be
the run-methods). It reads the far field, refractive index and the
evaluation points from the far field post-processes.

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 pypmj	

 	
 	
 pypmj.core	

 	
 	
 pypmj.extension_antenna	

 	
 	
 pypmj.parallelization	

 	
 	
 pypmj.utils	

Index

 A
 | C
 | D
 | E
 | F
 | G
 | I
 | J
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W

A

 	
 	add() (pypmj.parallelization.DaemonResource method)

 	add_all() (pypmj.parallelization.ResourceDict method)

 	add_all_repeatedly() (pypmj.parallelization.ResourceDict method)

 	add_repeatedly() (pypmj.parallelization.DaemonResource method)

 	add_resources() (pypmj.core.ConvergenceTest method)

 	(pypmj.core.ResourceManager method)

 	(pypmj.core.SimulationSet method)

 	
 	all_done() (pypmj.core.SimulationSet method)

 	analyze_convergence_results() (pypmj.core.ConvergenceTest method)

 	analyze_far_field() (pypmj.extension_antenna.FarFieldEvaluation method)

 	append_dir_to_zip() (in module pypmj.utils)

 	append_store() (pypmj.core.SimulationSet method)

 	assign_kwargs_to_functions() (in module pypmj.utils)

C

 	
 	Capturing (class in pypmj.utils)

 	check_type_consistency_in_sequence() (in module pypmj.utils)

 	check_validity_of_input_args() (pypmj.core.QuantityMinimizer method)

 	close_store() (pypmj.core.SimulationSet method)

 	close_stores() (pypmj.core.ConvergenceTest method)

 	
 	computational_costs_to_flat_dict() (in module pypmj.utils)

 	compute_geometry() (pypmj.core.Simulation method)

 	(pypmj.core.SimulationSet method)

 	ConvergenceTest (class in pypmj.core)

 	copy_to() (pypmj.core.JCMProject method)

D

 	
 	DaemonError

 	
 	DaemonResource (class in pypmj.parallelization)

 	DisableLogger (class in pypmj.utils)

E

 	
 	expression (pypmj.parallelization.DaemonError attribute)

F

 	
 	far_field_processing_func() (in module pypmj.extension_antenna)

 	FarFieldEvaluation (class in pypmj.extension_antenna)

 	file_content() (in module pypmj.utils)

 	
 	find_file() (pypmj.core.Simulation method)

 	find_files() (pypmj.core.Simulation method)

 	fix_h5_store() (pypmj.core.SimulationSet method)

 	forget_jcm_results_and_logs() (pypmj.core.Simulation method)

G

 	
 	get_all_keys() (pypmj.core.SimulationSet method)

 	get_all_queues() (pypmj.parallelization.ResourceDict method)

 	get_all_workstations() (pypmj.parallelization.ResourceDict method)

 	get_available_cores() (pypmj.parallelization.DaemonResource method)

 	get_current_resources() (pypmj.core.ConvergenceTest method)

 	(pypmj.core.ResourceManager method)

 	(pypmj.core.SimulationSet method)

 	get_file_path() (pypmj.core.JCMProject method)

 	
 	get_folders_in_zip() (in module pypmj.utils)

 	get_len_of_parameter_dict() (in module pypmj.utils)

 	get_project_file_path() (pypmj.core.JCMProject method)

 	get_project_wdir() (pypmj.core.SimulationSet method)

 	get_resource_names() (pypmj.parallelization.ResourceDict method)

 	get_resource_with_most_cores() (pypmj.parallelization.ResourceDict method)

 	get_resources() (pypmj.parallelization.ResourceDict method)

 	get_resultbag_path() (pypmj.core.SimulationSet method)

 	get_store_data() (pypmj.core.SimulationSet method)

I

 	
 	import_jcmwave() (in module pypmj)

 	infer_dtype() (in module pypmj.utils)

 	
 	is_callable() (in module pypmj.utils)

 	is_sequence() (in module pypmj.utils)

 	is_store_empty() (pypmj.core.SimulationSet method)

J

 	
 	jcm_license_info() (in module pypmj)

 	
 	jcm_version_info() (in module pypmj)

 	JCMProject (class in pypmj.core)

L

 	
 	lists_overlap() (in module pypmj.utils)

 	load_config_file() (in module pypmj)

 	
 	load_extension() (in module pypmj)

 	load_far_field_data() (pypmj.extension_antenna.FarFieldEvaluation method)

 	load_state() (pypmj.core.ResourceManager method)

M

 	
 	make_simulation_schedule() (pypmj.core.ConvergenceTest method)

 	(pypmj.core.QuantityMinimizer method)

 	(pypmj.core.SimulationSet method)

 	maximize_multiplicity() (pypmj.parallelization.DaemonResource method)

 	
 	maximize_n_threads() (pypmj.parallelization.DaemonResource method)

 	merge_pp_files_to_project_file() (pypmj.core.JCMProject method)

 	message (pypmj.parallelization.DaemonError attribute)

 	minimize_quantity() (pypmj.core.QuantityMinimizer method)

N

 	
 	num_sims_to_do() (pypmj.core.SimulationSet method)

O

 	
 	obj_to_fixed_length_Series() (in module pypmj.utils)

 	
 	open_store() (pypmj.core.SimulationSet method)

 	open_stores() (pypmj.core.ConvergenceTest method)

P

 	
 	pickle_optimization_results() (pypmj.core.QuantityMinimizer method)

 	process_results() (pypmj.core.Simulation method)

 	pypmj (module)

 	
 	pypmj.core (module)

 	pypmj.extension_antenna (module)

 	pypmj.parallelization (module)

 	pypmj.utils (module)

Q

 	
 	QuantityMinimizer (class in pypmj.core)

 	
 	query_yes_no() (in module pypmj.utils)

R

 	
 	rb_get_log_for_sim() (pypmj.core.SimulationSet method)

 	rb_get_result_for_sim() (pypmj.core.SimulationSet method)

 	read_jcm_far_field_tables() (in module pypmj.extension_antenna)

 	read_resources_from_config() (in module pypmj.parallelization)

 	relative_deviation() (in module pypmj.utils)

 	remove_working_dir() (pypmj.core.JCMProject method)

 	remove_working_directory() (pypmj.core.Simulation method)

 	rename_directories() (in module pypmj.utils)

 	reset_daemon() (pypmj.core.ResourceManager method)

 	reset_resources() (pypmj.core.ConvergenceTest method)

 	(pypmj.core.ResourceManager method)

 	(pypmj.core.SimulationSet method)

 	
 	ResourceDict (class in pypmj.parallelization)

 	ResourceManager (class in pypmj.core)

 	restore_default_m_n() (pypmj.parallelization.DaemonResource method)

 	restore_original_project_file() (pypmj.core.JCMProject method)

 	restore_previous_m_n() (pypmj.parallelization.DaemonResource method)

 	resultbag() (pypmj.core.SimulationSet method)

 	rm_empty_directory_tail() (in module pypmj.utils)

 	run() (pypmj.core.ConvergenceTest method)

 	(pypmj.core.SimulationSet method)

 	run_reference_simulation() (pypmj.core.ConvergenceTest method)

 	run_simusets_in_save_mode() (in module pypmj.utils)

 	run_test_simulations() (pypmj.core.ConvergenceTest method)

S

 	
 	save_far_field_data() (pypmj.extension_antenna.FarFieldEvaluation method)

 	save_m_n() (pypmj.parallelization.DaemonResource method)

 	save_state() (pypmj.core.ResourceManager method)

 	savely_convert_config_value() (in module pypmj.parallelization)

 	send_status_email() (in module pypmj.utils)

 	set_log_file() (in module pypmj)

 	set_m_n() (pypmj.parallelization.DaemonResource method)

 	set_m_n_for_all() (pypmj.parallelization.ResourceDict method)

 	set_multiplicity() (pypmj.parallelization.DaemonResource method)

 	set_n_threads() (pypmj.parallelization.DaemonResource method)

 	
 	set_pass_computational_costs() (pypmj.core.Simulation method)

 	show_readme() (pypmj.core.JCMProject method)

 	Simulation (class in pypmj.core)

 	SimulationSet (class in pypmj.core)

 	solve() (pypmj.core.Simulation method)

 	solve_single_simulation() (pypmj.core.SimulationSet method)

 	solve_standalone() (pypmj.core.Simulation method)

 	split_path_to_parts() (in module pypmj.utils)

 	STORE_META_GROUPS (pypmj.core.SimulationSet attribute)

 	STORE_VERSION_GROUP (pypmj.core.SimulationSet attribute)

T

 	
 	tForm() (in module pypmj.utils)

U

 	
 	use_only_resources() (pypmj.core.ConvergenceTest method)

 	(pypmj.core.ResourceManager method)

 	(pypmj.core.SimulationSet method)

 	
 	use_single_resource_with_max_threads() (pypmj.core.ResourceManager method)

V

 	
 	view_geometry() (pypmj.core.Simulation method)

W

 	
 	wait_for_all_other_daemons() (in module pypmj.utils)

 	walk_df() (in module pypmj.utils)

 	
 	working_dir() (pypmj.core.Simulation method)

 	write_analyzed_data_to_file() (pypmj.core.ConvergenceTest method)

 	write_store_data_to_file() (pypmj.core.SimulationSet method)

 nav.xhtml

 Table of Contents

 		
 Welcome to pypmj’s documentation!

 		
 pypmj package

 		
 Module contents

 		
 pypmj

 		
 pypmj.core module

 		
 pypmj.parallelization module

 		
 pypmj.utils module

 		
 Extensions

 		
 pypmj.extension_antenna

_static/ajax-loader.gif

_static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

